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SUMMARY

This research has addressed the problem of real time guidance and optimal control of
Aeroassisted Orbit Tra'nsfer Vehicles (AOTV's), using singular perturbation theory as an

underlying method of analysis. Trajectories have been optimized with the objective of
1_nimum energy expenditure in the atmospheric phase of the maneuver. Two major problem
areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the
reentry problem, several reduced order models were analyzed with the objective of optimal
changes in heading with minimum energy loss. It has been demonstrated that a further model
order reduction to a single state model is possible through the application of singular
perturbation theory. The optimal solution for the reduced problem defines an optimal
altitude profile dependent on the current energy level of the vehicle. A separate boundary

layer analysis is used to account for altitude ,and flight path angle dynamics, and to obtain lift
and bank angle control solutions. By considering alternatave approximations to solve the
boundary layer problem, three guidance laws were derived, each having an analytic feedback
form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle
model and all three were found to be near optimal.

For the problem of synergetic plane change with aeroglide, a difficult terminal
boundary layer control problem arrises which to date has been found to be analytically
intractable. Thus a predictive/corrective solution was developed to satisfy the terminal
constraints on altitude and flight path angle. A composite guidance solution was obtained by
combining the optimal reentry solution with the predictive/corrective guidance method.
Numerical comparisons with the corresponding optimal trajectory solutions show that the
resulting performance is very close to optimal.

An attempt was made to obtain numerically optimized trajectories for the case where
heating rate i_ constrained. A first order state variable inequality constraint was imposed on
the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate
model. For high heating rate limits (just below the peak heating ram for the unconstrained
case), the r_sulting solution appears to satisfy the first order necessary conditions for a
"touch point" p_oblem, where the constraint is met at-a single point. Lower heating rate
limits likely result iffa constrained arc, of finite duration. Unfortunately, numerically
converged optimal trajectories for this range of solutions could not be obtained using the
multiple shooting method employed in this research.
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SECTION 1

INTRODUCTION

Energy state approximations combined with singular perturbation theory

have proven useful in aircraft trajectory optimization, both in obtaining

algebraic control solutions and in satisfying trajectory and control

constraints [I-4]. However, the underlying flat earth and constant

gravitational field assumptions in aircraft modeling do not apply to

hypersonic vehicles. Moreover, the use of singular perturbation theory

requires an inherent time scale separation in the problem formulation for

successful application. The intent of this research effort has been to

explore the usefulness of singular perturbation analysis in the development

of real time guidance algorithms for problems related to AOTV maneuvers.

The problem of optimal atmospheric heading change with minimum energy

loss has application to maneuvering reentry vehicle guidance and to

aeroassisted orbit transfer vehicle (AOTV) guidance. The problem of

aeroassisted orbit plane change requires the use of three impulses - one to

deorbit, one to reorbit and one to recircularize at the new orbit. The orbit

plane change is effected entirely in the atmosphere through the use of lift

and bank angle control. Circular orbit plane changes in which the initial

and final orbital altitudes are equal were studied in [5-9]. These studies

considered various problem formulations with the underlying approximation

that an expression related to the sum of the centrifugal and gravitational

forces (Loh's term) is constant or piecewise constant over the atmospheric

maneuver. Furthermore, in the absence of heating constraints, the optimal

trajectories are of short duration, and the inclination change is closely

approximated by the heading change. For this situation, the dynamics can be

reduced to fourth order, and minimization of fuel consumption is closely

approximated by minimizing the energy loss in the atmospheric portion of the

trajectory [6]. As a point of reference, the optimal AOTV maneuver requires

approximately 50% of the fuel needed for the single impulse pure propulsive

maneuver in the case of a 40 degree low Earth orbit plane change. In [10], a

regular perturbation method is used to remove the approximations related to

Loh's term in the earlier work and demonstrates a significant improvement

over the solutions in [5-9]. However, this approach requires a quadrature at
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each update of the control solution and the approach can not be readily

extended to-include the effect of heating constraints.

Examplesof numerical optimization studies related to orbit plane change

can be found in [11-13]. In particular, [12-13] examine the effect of a

heating rate constraint with thrusting in the atmosphere. Since the duration
of the AOTVmaneuver is much greater when a heating rate constraint is

enforced, it is necessary to consider a more complete set of dynamics which

includes the cross range angle. Ref. [12] treats the problem of optimal

aerocrui_e (flight at constant altitude and velocity), and does not consider
the transitions to and from the cruise condition. In [13], a more general

problem is treated with a constant thrust segment inserted during the

atmospheric phase. Thus, in our work we decided to place emphasis on optimal

aeroglide (no thrusting in the atmosphere) subject to a heating rate

constraint. A more complete account of related work in noncoplanar transfer,

including other competing transfer modes, can be found in E14].

Section 2 of this report presents the problem formulation and issues

related to model order reduction. Section 3 treats the problem of optimal

heading change with minimum energy loss in the context of singular

perturbation analysis. Section 4 addresses the AOTVsynergetic plane change

problem by introducing a predictive/corrective solution to satisfy the

terminal constraints on altitude and flight path angle. Section 5 summarizes

the results for a numerical study of the effects of a heating rate constraint

on the AOTV synergetic plane change problem. Section 6 summarizes the
results and recommendationsfor further research along this line.
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SECTION 2

PROBLEM FORMULATION

2.1 Equations of Motion

The equations of motion for gliding flight about a sperical nonrotating

Earth are given by:

dB/dt : Vcosycos¢/rcos¢: r : r +h
S

(1)

d¢/dt : Vcosysin¢/r (2)

dh/dt = Vsiny (3)

dV/dt = -D/m -gsiny: g = v/r 2 (4)

Vdy/dt : Lcosp/m + (V2/r-g)cosy (5)

Vd¢/dt = Lsinp/mcosy - (V2/r)cosycosCtan¢ (6)

where e is the longitude, ¢ is the latitude, h is the altitude, rs is the

Earth's radius, V is the velocity, y is the flight path angle, ¢ is the

heading angle, D is the drag force, _ is the Earth's gravitational constant,

and m is the vehicle mass. The control variables are the lift force (L) and

bank angle (p).

The orbit inclination angle is given by the relation

cos i = cos¢cos@ (7)

The plane change is the angle between the normals to the initial and

final orbital planes. The actual inclination (i) is defined relative to the

equatorial plane. Many studies on optimal plane change have taken the

equatorial plane as the initial plane, in which case the plane change equals

the final inclination angle (if). However, it has been shown in [12] that,

under the assumption of spherical symmetry, maximizing the inclination is

equivalent to maximizing the plane change angle provided that the deorbit

burn is properly timed so that the plane change occurs at the proper

location. This depends only on the location of the ascending node for the

final &rbit plane.

-3-
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Thus, there is no loss in generality in assuming that the initial plane

is the equitorial plane, and that the inclination change is the final

inclination angle. A second consequence of th_s fact is that B becomes an

ignorable coordinate in most AOTV optimization problems since it does not

appear in the right hand side of the equations of motion, and it does not

enter the boundary conditions or the performance index for optimal control

problem formulations of practical interest.

For short duration maneuvers, the cross range angle can be treated as

being negligibly small in (1),(6) and (7). In this case the inclination

change is approximated by the heading change, and ¢ also becomes an ignorable

coordinate. Thus it is possible to reduce the equations of motion to a four

state model, which for the purposes of this study are expressed in the

following form:

dh/dt = Vsiny (8)

dEldt = -CDS (i+_,2) pV3/4m (9)

dy/dt = (CLPSV/2m) (_,cosp+Mcosy) (i0)

d¢/dt = CLApSVsin_/2mcosy (11)

where

CD = CDo + KCL2 (12)

* 2
M(h,V) = (2m/CLS)[1-v/V r]/pr, r = rs+h (13)

In these equations the superscript * denotes the maximum lift-to drag values"

)1/2 *
CL = (CDo/K CD = 2CDo (14)

and _ is the normalized lift coefficient

), : CL/C L (15)

-4-
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Here we have employed E as a state variable in place of velocity (V), where

E : V2/2 - v/r (16)

In [6] velocity is used as a state variable, and the gravity component was

ignored in the velocity rate equation. One advantage to using E as a state

variable is that (9) is independent of y. In (16), the reference point for

zero potential energy is taken at r = _. This transformation implies that

wherever V appears in the equations, it is replaced by [2(E+v/r)] 1/2. The

control variables are _ and the bank angle (u). Under the hypothesis that

the cross range angle is small, ¢ closely approximates the change in orbit

inclination.

A further reduction to a third order model is justifiable if the

objective is minimize the energy loss in the atmospheric phase of the

maneuver. In this case one can treat energy as constant in the dynamics, and

account for the energy loss in the performance index using the following

integral form

tf

J : fo CDS(I+_2)pV3/4m dt (17)

Thus, E can also be regarded as an ignorable coordinate in this case.

This will result in a reasonable approximation if the energy loss is small

compared to the total vehicle energy. This approximation is greatly improved

if the control solution is periodically updated to account for the present

vehicle energy during the maneuver, which would be the case if a feedback

(analytic) optimal control solution form was obtainable.

2.2 Singular Perturbation Formulation

The main approximation introduced here is that altitude and flight path

angle dynamics can be regarded as fast compared to heading dynamics. In the

context of singular perturbation theory, this implies a further order

reduction to a single state model, with altitude as the control variable. To

motivate this viewpoint, it is desirable to identify a small parameter wbich

-5-



appears as a multiplying factor on the left side of the altitude and flight

path angle equations of motion. Currently, there is no systematic procedure

for putting the equations of motion in this standard form. However, it is

generally agreed that the equations of motion should always be

non-dimensionalized as an initial step. The following transformations are

introduced here to justify the formulation adopted in this study.

Define the following non-dimensional variables:

41 = ¢/_f t I = (CLSPoVc/2m_f)t (18)

V1 : V/Vc Pl : P/Po (19)

v

hI = h/h ° rI = r/r ° (20)

where ho is the entry altitude, Po is the air density at h = ho, Vc =

[V/roll/2 is the circular velocity at ho, and _f is the final heading (final

inclination for small changes in ¢). Also assume that for the altitudes of

interest that r = r . Then (g), (11-12) become:
S

d_l/dt I = PlV1_sin_/cosy (21)

_dhl/dt I = V1sin Y (22)

edY1/dt I = CLSpVcV1acos_/2m + VcVl[1-1/V_rs]COSy/r s (23)

Y(

where E : CLS Poho/2mCf.

heading changes, or if

Hence _ is a small parameter for sufficiently large

CLSPlho/2m<<V_ f (24)

A typical calculation for a 40° plane change and ho = 200,000 ft gives E =

0.0043 for a vehicle with a maximum L/D of 2.3.

The analysis in Section 3 of this report uses the original state

variables and artificially introduces _ = 1.0 as a scaling parameter. It can

-6-



be shown that this formal procedure results in the same control solution as

that obtained using the formulation in (21-23) in the non-dimensionalized
variables.

2.3 Boundary Conditions

In [6], the sensible atmosphere is assumed to occur at h(O) = 200,000

ft. The starting velocity and flight path angle are derived using a deorbit

impulse AV1 from circular orbit at hc = 100 nm, which is optimized for the

atmospheric maneuver of interest. The initial heading angle is taken as

zero. In the singular perturbation formulation, altitude appears as a

control variable in the reduced problem. The optimal solution appears in the

form

h = ho(E) (25)

For comparison purposes, in this paper the starting energy is chosen to match

that of [8] for the case of a 40 ° heading change. From conservation of

energy this results in the same deorbit impulse. The initial flight path

angle is derived from conservation of angular momentum.

y(o) : -cos-l[(rc)(Vc-aV1)/(rs+h(o)V(o))] (26)

where rc is the circular orbit radius and Vc=(_/rc )1/2 is the circular velo-

city. The vehicle begins the maneuver with a mass mc and, as a result of

the deorbit impulse, the mass for the atmospheric portion is given by

m = mc exp(-aVl/C)

The terminal condition is taken as:

(27)

_(tf) : Sf > 0 (28)

For the reentry problem there are no terminal constraints on altitude and

flight path angle, thus their corresponding costate values are zero at the

final time. For the noncoplanar orbit transfer problem, the final altitude

is constrained to ensure exit from the atmosphere.

-7-
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SECTION 3

HEADING CHANGE WITH MINIMUM ENERGY LOSS

The objective is to minimize the energy lost in maneuvering to a speci-

fied heading. Regarding energy as a slow variable, and altitude and flight

path angle as fast variables, the following three state model was adopted for

singular perturbation analysis:

d¢/dt = CLPSV_sinu/2mcosy (29)

Edh/dt = Vsiny (30)

_y/dt = CLPSV(_cos_+Mcosy)/2m (31)

The objective is to minimize

where

tf

J =- f
o

: -C_(l+_2)pSV3/4m

(32)

(33)

Note that in the above formulation E is approximated as constant in the

dynamics, but that changes in energy are accounted for in the performance

index. This approximation will later be relaxed in the subsequent analysis.

The perturbation parameter E is introduced to signify the presence of fast

dynamics, and is nominally equal 1.0. We seek a reduced and zero order boun-

dary layer solution about _ = O, in accordance with the procedures detailed

in [2-4]. Regarding h and y as fast states is characteristic of energy state

analysis for fighter and transport aircraft. Therefore, we adopt the same

framework in this analysis. Considering both h and y in the same time scale

results in a two point boundary value problem. A feedback guidance law is

obtained by expansion of the necessary conditions to first order [15]. In

this regard, it should be noted that there have been some studies that have

also considered analysis of h and y dynamics on separate time scales [16],

which avoids linearization the boundary layer dynamics. Therefore, an

additional set of guidance laws are possible beyond those presented here.

-8-



3.1 Stngular Perturbation Analysis

Reduced Problem

Setting ¢ : 0 in (29-31) the necessary conditions for optimality become:

Ho = XV_ - _ = 0

y : O, kCOSp : -M

PO' ho = arg min {_/_}
h,p

(34)

(35)

(36)

It can be shown that this results in the following reduced solution"

v

ko : (1 + 2Mo) 2 (37)

2 2 1/2

sinp o = [(I + Mo)/(1 + 2Mo)] (38)

2 2 1/2

h0 = arg min {V (i + M ) }JE = const.
h

(39)

v where Mo is the value of M for h = ho. The quadrant for the bank angle in

(38) is resolved based on the following inequalities:

0 < I_o < _/2 for Mo < 0

_/2 < Po < _ for Mo > 0

(40)

(41)

It can be.seen from the above solution that M plays a crucial role in the

solution process.

Since most of the energy is kinetic, V is weakly dependent on h for con-

stant E. This can readily be seen from (16) where changes in h give rise to

small changes in r. Thus, the minimization in (39) results in a value for M

very close to zero. The interpretation is that the maneuver should be per-

formed at an altitude where gravitational and centrifugal forces nearly

-9-



cancel one another. For M small, it can be seen from (37,38) that the maneu-

ver is performed at near maximumL/D and at near 90° of bank angle. These
results are in good agreementwith the results in [6] for the AOTVproblem.

It will also been shown in Section 3.2 that the reduced solution altitude

profile, ho(E), closely resembles the altitude profile of [6] for the case of
large changes in inclination angle.

Boundary Layer Problem

V

Introducing the transformation T : t/E and again setting ¢ = O, the nec-

essary conditions in the boundary layer are:

v

HBL : _$ + _hVsiny + _y_ - _ = 0

BHBL/BL I : O, aHBL/BL 2 : 0

o is determined in the reduced solution from (34)
where _

* 2 I+M2)1/2o *o = : .CDVo( icL

(42)

(43)

(44)

using the solutions for 40, _o and ho. In (43), L1 and L2 represent the

horizontal and vertical components of lift coefficient

LI = _sin_ L2 = _cos_ (45)

which are now used as control variables in place of _ and u.

The first condition in (43) results in

V

. 2 i/
L1 : (Vo/V) (i + Mo) 2/cosy (46)

where Mo, Vo are the values of M and V corresponding to h = ho for the

current value of E. This solution approaches the corresponding reduced

solution as h approaches ho-

The second condition in (43) yields

- 10 -
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* _ * 2

L2 = -(CL/CDV );_y (47)

which can also be shown to approach the reduced solution as h approaches h
o'

where

* 2 *

_oy = CD Vo Mo/C L' _h° = 0 (48)

v

The reduced solution for A in (48) follows immediately from (31) and (47)
, Y

with L2 = -Mo (_y = 0, in the reduced solution). The second condition in

(48) is a consequence of the fact that h results from an unconstrained
o

minimization of H°. Note that _ satisfies the terminal boundary condition,

but _o does not. This point will be addressed in the numerical results
Y

section.

Unfortunately, evaluation of A needed in (47) requires the solution of
Y

a two-point boundary value problem. When close to the reduced solution it

may be possible to use (48), which results in the following expression for

flight path angle rate

* 2 2

dy/dt = CLPSV(Mcos Y - VoMo/V )/2m (49)

For y near zero and h near ho, (49) simplifies to

Y¢

dy/dt = CLPSVo(M-Mo)/2m (50)

Use of (46) and (47) with _ = _o results in a guidance law in feedback form,
Y Y

which we denote as the "SPI" Solution.

Expansion of theBoundary Layer Problem [15]

A second feedback solution can be obtained by considering an expansion

of the boundary layer necessary conditions of (42,43) together with the state

and costate dynamics expressed in the stretched time scale • = t/_"

dh/d_=V siny, d_h/d_=-aHBL/ah (51)

- 11 -
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dyld_=CLpSV(L2+Mcosy)12m, d_/d_=-aHBL/By (52)

Substituting for LI and L2 from (46,47), equations (51,52) are expanded about

the reduced solutions equilibrium conditions:

i

: ho(E), y : 0 (53)

_h : 0 _ : _o (54), y Y

This results in the following linear perturbation equations:

6h"

y,

I

_h

6)_'
• 'Y

0

K1

K3

0

Vo 0 O

0 0 K2

0 0 -K1

K4 -Vo 0

Fah]

:/
6_y]

(55)

where

KI = [V2r2-(BV2+ )r+2  ]/ Vr3

* - 2
-2_2/V3r 4 _ CLS_Mp/mVr

K2 = -CLSp/2mCDV

(56)

(57)

K3 : -B2HBL/Bh2 _ 0

* 3
K4 = CDSpV (l+2M2)/2m

(58)

(59)

The expressions in (56-59) are evaluated at h = ho, and _ is the scale height

in an exponential atmospheric model. The term in (58) is complicated to

express analytically, but can easily be evaluated numerically taking into

account the fact that both HBL and aHBL/ah evaluated at h = ho is zero.

The eigenvalues of 155) are arranged symmetrically about the imaginary

axis, and occur in complex conjugate pairs. In order to suppress the

- 12 -



instability in the boundary layer response, the state vector in (55) is

expressed as

x = kla + k2_ (60)

where x T = [_h, y, )th, 6),y], and a,6 are the real and imaginary parts of the

eigenvectors associated with the stable eigenvalues. Knowing _h and y, it is

a simple exercise to solve for kl, k2, )th and 6Jt_,. Then L2 in (47) can be

evaluated for

x : + (61)
Y Y Y

Equations (46,47) and (61) thus constitute a second feedback guidance law,

which we term the "SP2" Solution.

Modeling Energ_ Rate Dynamics

If energy rate is modeled in the dynamics, the reduced model becomes a

two-state problem, and the performance index is modified to minimize -E(tf).

The Hamiltonian in this case is

H° : _¢_ + XE_ : O, XE(tf) : -1 (62)

This gives rise to a two-point boundary value problem in the reduced solu-

tion. However, an approximate integration of hE is possible in this case,

based on the known properties of the optimal solution. Using (62), it is

easy to demonstrate that

d_E/dt = -aHo/aE : _ECD Sp_(l+x )/2m (63)

Thus,

dXE/d ¢ : (2CD(1+),2)cosy/CLXsinp)kE _- (2CD/CL)},E (64)

- 13 -
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where the approximations A = I, _ = _/2, y _ 0 have been employed.

tion of (64) results in

_'E(¢) -"-exp{-2C D(¢f-¢)/cL}

Integra-

(65)

v

Comparing the Hamiltonian expressions in (34) and (62), it can be seen

that modeling E as constant in the dynamics amounts to the approximation hE =

-i. Equation (65) represents an improvement, but the approximation hE = -I

is apparently accurate for high L/D vehicles. So far as its effect on the

reduced solution, (37-41) remain the same. The reduced costate solutions

become:

r_

o = * 2 1/2 .
_ -_ECDVo (I+Mo2) /C L (66)

o O, A° * 2 *
Ah = x = _ECDVo Mo/C L (67)

V

Note that the ¢ and y costate solutions are now simply multiplied by hE. The

boundary layer solution for L1 in (46) remains the same, but (47) becomes

* * * 2

L2 :-(CL/CDV ))'y/)'E (68)

Thus the SP1 control solution, which uses _ : _o remains unchanged when E is
Y Y

modeled in the dynamics, since hE is canceled when 1° from (67) is substi-Y
tuted in (68). The SP2 solution, on the other hand, is affected in that

several of the matrix elements in (55) are changed. In particular, K2 and K4

are divided by hE and HBL used in the computation K3 becomes

HBL : _¢_ + lhV siny + ly_ + IEE (69)

v We will refer to the control solution obtained with these modifications as

the "SP3" Solution.

3.2 Numerical Results

A numerical study was performed to evaluate the performance of the three

- 14 -
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guidance laws derived in the preceding section. The parameter values, chosen

to approximate the vehicle studied in [5], are as follows"

CDo : .032, S : 125.8 ft2, K : 1.4, m = 331.5 slugs

The initial conditions were chosen to match the 40° heading change maneuver

of [5], where the sensible atmosphere was defined to begin at an altitude of

200,000 ft. The corresponding entry velocity and flight path angles are V(O)

= 25,945 ft/s and y(O) = -.148 °. A simple exponential atmospheric mocLel was

defined using the standard atmospheric data for air density at altitudes of

105 and 2x105 feet. All of the comparisons are for a 40 ° heading change.

We first illustrate the validity of the singular perturbation

formulation by comparison of the reduced solution altitude profile obtained

from the use of (39), with the optimal solution for the 40 ° plane change

problem. The optimal solution was calculated using a multiple shooting

method described in [17]. Figure 1 illustrates this comparison. The optimal

solution altitude profile satisfies a terminal constraint that h(tf) = h(O),

needed for a typical AOTV orbit plane change. It can be seen that the

reduced solution altitude profile closely follows the optimal altitude

profile, with the exception of satisfying the initial and final values of

altitude, which are lost in the reduced problem formulation (altitude is a

control like variable). Clearly, the reduced solution can be used for the

initial phase of an AOTV plane change maneuver, but a large terminal boundary

layer correction is needed for the exit phase. This aspect will be addressed

in Section 4 of this report.

We next consider the performance of the guided solutions for the reentry

problem. Figure 2 compares the reduced solution altitude profile obtained

from (39) with the SP1 and SP3 guided solution profiles, which on this scale

are identical. A similar comparison is given for the SP2 guided solution in

Fig. 3. Note that the reduced solution provides a reasonable altitude

profile except at high energies near the initial time. However, this region

of the solution is of little interest since the air density is negligibly

small. In any case, it is not physically possible to follow this profile

(recall that h is used as a control variable in the reduced solution). Thus,

it was decided to maintain _ = 1 and _cosp = -M (y=O) until ho(E) falls below

the current altitude.
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In order to evaluate the optimality of these solutions, an optimal solu-

tion was nmmerically computed using the four-state model in (8-11) to define

the dynamics. The SPl guided solution was used as an initial guess for the

state time histories, and the reduced solutions in (44), (54), and (65) were

used as an initial guess for the costate time histories. The solution

converged to a relative precision of 10-12 in eight iterations. The value of

the Hamiltonian was constant and essentially zero considering the relative

precision accuracy required for convergence. This served as an independent

check on the accuracy of the solution.

Figure 4 compares the optimal altitude profile with the profiles that

result from the three guided solutions. Note that the optimal solution dips

slightly more into the atmosphere near the end, and consequently results in

slightly decreased flight time. The corresponding control time histories and

heading profiles are compared in Figs. 5-7. Note that in Fig. 5, the optimal

bank angle at the final time is 90°, which follows from (47) and the fact

that _ (tf) = O. In the comtext of singular perturbation theory, this givesY

rise to a terminal boundary layer which must be solved backwards in time.

Since this was ignored in our analysis, the guided solutions approach the

condition in (48) instead. This explains the departure in the altitude

profiles of Fig. 4. It is apparent that this effect is a minor one. In any

case, the dip in the optimal profile may not be desirable from a practical

standpoint.

It may be somewhat surprising at this point that the SPl and SP3 solu-

tions are nearly identical. However, recall that the SP1 solution is not

sensitive to the approximation that E is modeled as constant in the dynamics.

The SP3 solution corrects the SP2 solution for this modeling approximation,

and results in essentially the same solution as the SP1 solution. This fact

also justifies the use of approximation _ = L o in the SP1 solution. Table
Y Y

1 compares the energy loss for all the solutions, and shows the three guided

solutions produce essentially optimal performance. The energy loss for the

SPl and SP3 solutions is indistinguishable from the optimal solution to four

significant places, while the energy loss for the SP2 solution is .06%

greater.

- 16 -
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SECTION 4

AEROASSISTED ORBIT TRANSFER

The preceeding section has demonstrated that singular perturbation

theory can be used as an effective tool in model order reduction for the

problem of hypervelocity heading change within the atmosphere with minimal

energy loss. The extension to aeroassisted orbit transfer with inclination

change requires that a contraint be imposed on the terminal altitude to

insure that the vehicle exits the atmosphere when the heading change (which

approximates the inclination change) is achieved. This introduces a

difficult terminal boundary layer problem, which to date we have not been

able to solve in closed form, since it requires an analytic integration of

the boundary layer equations. In [5-9] this same problem arises, but in a

different context. In these studies, the states and co-states associated

with a four-state model are analytically integrated with the assumption that

Loh's term, M(h,V), is constant or piecewise constant over the trajectory.

While this is true for a large portion of the maneuver, M undergoes a large

variation near the end. Consequently, the guidance algorithms resulting from

these studies require large angles of attack near the end of the maneuver to

compensate for this variation. This drawback was subsequently removed in

[10], however, the resulting guidance algorithm requires that a complex

quadrature be performed at each guidance interval. Moreover, this approach

is not readily extended to the case where heating rate is constrained.

The essential problem in all these approaches lies in the fact that air

density decreases exponentially as altitude increases, and corrections to

satisfy terminal constraints must be accurately predicted while the vehicle

is at lower altitudes.

In this section, the simplest guidance algorithm presented in Section 3

is used for the initial portion of the maneuver, and a predictor/corrector

type algorithm is presented for the terminal maneuver. The

predictor/corrector algorithm relies on bank angle control alone, and thus

avoids the problem of large angle of attack. The form of the guidance

algorithm was chosen to closely approximate the known properties of the

optimal solution, while permitting an accurate integration of the equations

of motion. The predictor/corrector algorithm provides the information needed

- 17 -



to both initiate the terminal maneuver, and to guide the vehicle in closed

loop fashion. The availability of a closed loop guidance algorithm will be

of paramount importance in future studies addressing the effect of

atmospheric anomalies, and of course, for real time implementation.

Comparisons are made to numerically optimized trajectories for a range of

orbit plane angles to demonstrate the near optimality of the complete

guidance algorithm.

4.1 Guidance During the Reentry Phase

Guidance during the reentry phase is based on the zero order reduced and

boundary layer solution referred to as the SP1 solution in Section 3. This

consists of first calculating the reduced solution in (39), and then

calculating the horizontal and vertical components of the normalized lift

vector using (46,47), with _ = _ o as given by (48).
Y Y

4.2 Guidance During the Exit Phase

The reentry phase guidance algorithm does not satisfy the terminal

constraint on h, which was iost in the reduced formulation. The terminal

boundary layer necessary conditions are identical in form to those for the

initial boundary layer. However, the solution asymptotically approaches the

reduced solution backwards in time, starting from the terminal constraint on

altitude. In addition, the change in $ during the terminal maneuver must be

accounted for to insure that both terminal constraints are met

simultaneously. This requires an anlytical integration of the state and

costates. To circumvent this problem, a predictor/corrector

guidance law was developed based on the known properties of the optimal

solution: _ :i.O, _ :_/2.

To simplify the problem of integrating the forward motion, it is assumed

that the nominal exit maneuver consists of two regions. In the first, a

constant (negative) bank angle perturbation is used to increase the flight

path angle. This is followed by a second region in which y is influenced

only by gravity. A bank angle correction is computed throughout the maneuver

- 18 -



based on the predicted heading error at the final altitude. Constraints are

enforced to insure continuity at the junction of the two regions, and
satisfaction of the terminal constraint on altitude. The maneuver is

depicted in Fig. 8.
During terminal guidance, we maintain _ = 1.0, and modulate the bank

angle according to the following equations:

: _o - 6_o + 6_ = _ + _ (70)

where in Region 1:

_o = c°s-1 (-M), 6po = const. > 0 (71)

and in Region 2:

_o = 90°' _o = 0 (72)

The nominal trajectory can be analytically predicted for a_=O, and using the

approximations:

cos _ _ -M + 6_oSin_ o, sin y : y (73)

the details of which can be found in [18]. The predicted heading change

(aCp) for the exit maneuver is calculated at each integration step along the

trajectory, and is used to both initiate the maneuver (when aCp = ego ), and

to track the terminal constraint using a simple proportional control law,

_p = k(¢g ° - _p) (74)

Region 2 guidance is initiated when the present altitude satisfies the

continuity constraint at the junction of the two regions.

4.3 Numerical Results

A numerical study was performed to evaluate the performance of the

sub-optimal guidance algorithm described in the preceding section, using the

same vehicle data as presented in [6] and in Section 3. Fig's 9 and 10

illustrate the guided altitude profiles and the corresponding bank angle

profiles obtained for heading changes up to 400 , in increments of 100 . The

profiles are very close to 1.0 throughout for all the maneuvers, and are not
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illustrated. These results were generated for 6_° : 25°, k : 50, however it

was found that the general character of the solutions did not change as these

guidance parameters were varied. Note from Fig. 10 that, following the

initial perturbation, bank angle continues to decrease in Region i. This is

due to the variation in M that takes place as the altitude departs from the

reduced solution profile. After completing Region I, the bank angle remains

very close to 90°, or in other words, _ in (24) is very close to zero,

indicating the accuracy of the prediction algorithm.

In order to evaluate the optimality of the guidance algorithm, optimal

solutions were obtained numerically using the multiple shooting algorithm

[17]. Fig's. 11 and 12 illustrate the optimal altitude and bank angle

profiles. The most remarkable characteristic in these solutions is that the

final time is nearly independent of the final heading. Also note that the

final bank angle is always 90°, which is required by the necessary

conditions. The corresponding A profiles are shown in Fig. 13, which

verifies that the optimal solution lies close to _ = 1. The flight path

angle histories for all the cases in Fig. 9 and Fig. 12 are quite small, and

close to zero at the final time.

Despite the fact that the final times are considerably different, the

guided solution performance is not far from optimal. Table 2 illustrates the

near optimality by comparing the energy loss of the guided solutions with

that of the optimal solutions.
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SECTION 5

CONSTRAINED AEROGLIDE

The constrained aeroglide problem is treated in this section. This is

essentially the same problem addressed in Section 4 with the addition of a

heating rate constraint, which amounts to a first order state variable

inequality constraint.

5.1 Prob]em Formulation

For this problem it is necessary to consider the system of equations in

(2-6), since the approximation that ¢ = 0 is no longer valid. In this case,

B remains an ignorable coordinate, and (7) is used to define the change in

inclination angle. It was also necessary to initiate the maneuver at a much

higher altitude, since the starting condition for the results in Section 4

has a fairly high value of heating rate. Only numerically optimized

solutions were considered, using the same multiple shooting method that was

employed for the unconstrained solutions. First the touch point solution was

considered, and the range of maximum allowable heating rate over which this

solution applies was obtained for the same vehicle dynamics considered in

Section 4. Then, the constrained arc solution was attempted for lower values

of the heating rate limit. However, only a narrow range of solutions were

found for this case. Unfortunately, all of these solutions violate the

practical limits for heating rate. Hence, the optimal aeroglide problem

remains an open research issue. It may be that very complex behavior results

for lower values of heating rate limit, such as multiple touch point

solutions combined with portions of a constrained arc.

The expression for heating rate employed in this study was:

dQ/dt = 17600[p/ps]i/2[V/Vs ]3"15 (BTU/sec/ft 2) (75)

5.2 Numerical Results

The vehicle characteristics are the same as those given in Section 3.3.

The initial and terminal condition data are as follows:
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h(O) : h(tf) = 365,000 ft,

i(tf) = 18°

V(O) = 25,746 ft/s, = 0.550

The initial h, V and y correspond to the same deorbit impulse employed in

Sections 3 and 4.

Figures 14-16 illustrate the h, V and i profiles for the unconstrained

solution and for the touch point solution corresponding to a maximum heating

rate of 600 BTU/sec/ft 2. As the heating rate limit is decreased, the minimum

altitude and flight time increase. Figures 17 and 18 show the corresponding

control time histories. For the touch point solution, there is a slight jump

in the normalized lift coefficient at the touch point. However, this is

likely due to numerical inaccuracy in satisfying the touch point conditions.

The bank angle history is continuous. Figures 19 and 20 illustrate the jumps

that occur in the _h and _V at the touch point. All other costates are

continuous. All of the state and costate histories can be found in [18].

Figure 21 compares the heating rate profiles. The peak heating rate for the

unconstrained case was 729.3 BTU/sec/ft 2. In comparing these results it was

found that the increase in energy loss due to the heating rate limit imposed

was negligible. However lower heating rate limits will likely result in much

greater energy loss.

Attempts to decrease the heating rate limit below 600 BTU/sec/ft 2

resulted in convergence failure. This failure was abruptly encountered at a

heating rate limit of 599.3 BTU/sec/ft 2. Thus we suspect that either a

conjugate point is encountered, or the nature of the optimal solution changes

to either a constrained arc case or a multiple touch point case. The

constrained arc case was investigated, and after many attempts (including

reformulation in nondimensional variables) we were not able to obtain a

converged solution.

- 22 -



v

SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

The application of singular perturbation methods to optimal control

problems related to aeroassisted orbit transfer vehicles has been

investigated in this study. Two closely related problem formulations were

addressed: optimal reentry of a hypersonic gliding vehicle, and optimal

orbit plane change with aeroglide. In addition, an attempt was made to

obtain numerical solutions for optimal aeroglide orbit plane change subject

to a maximum heating rate constraint.

6.1 Conclusions

The major conclusions resulting from this research effort are as

follows:

(1) Singular perturbation theory using energy state approximations can

be used to reduce the model order to a single state equation, and a

closed form solution for the reduced problem can be readily

obtained. The solution for the reduced problem reasonably

approximates the full order optimal solution, except near the

initial and final conditions. By non-dimensionalizing the

equations of motion a singular perturbation expansion parameter can

be identified that depends on vehicle parameters and the required

heading change.

(2) For the reentry problem, three guidance algorithms were derived,

all of which are nearly optimal in terms of minimizing the energy

loss for the maneuver. No terminal boundary layer correction was

required for this problem formulation.

(3) A constraint on terminal altitude, required for the noncoplanar

orbit transfer problem, results in a difficult boundary layer

problem for which we were not able to obtain a tractable analytic

solution. However, the optimal terminal maneuver was approximated
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using a sub-optimal predictor/corrector guidance law. In general,

optimization of the terminal maneuver (to satisfy terminal

constraints) is not as critical as optimizing the initial (reentry)

portion of the maneuver.

(4) The problem of optimal orbit plane change subject to a heating rate

constraint results in a touch point extremal solution for a high

(but narrow) range of heating rate limit. These trajectories and

the corresponding control histories are similar to the

unconstrained solution, with negligible increase in energy loss.

This will not be true for lower values of the heating rate limit,

where the constrained trajectory may ride the constraint boundary

and/or contain multiple touch points. Unfortunately, the multiple

shooting method could not be successfully used to find extrema]

solutions corresponding to the first order necessary conditions

associated with this problem.

6.2 Recommendations

Based on the results of this research effort, the recommendations for

further work along this line are:

(1) The numerical study of optimal aeroassisted orbit transfer with

aeroglide, subject to a heating rate constraint, should be

completed over a more practical range of heating rate limit. Along

this line, alternative formulations of the necessary conditions,

such as the transformation method in [19], should be explored.

Another approach is to use a parameter optimization based method

such as that employed in OTIS [20]. In this case, the constraint

would be enforced indirectly through a penalty function approach.

The resulting profiles are of interest for comparison to aerocruise

solutions [12], and for further developing near optimal guidance

algorithms based on singular perturbation theory.

(2) Further research is needed to develop methods of solving the

terminal boundary layer problem associated with terminal
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constraints. One such alternative, investigated in this study [18]

(but not reported here), is a formulation in which the terminal

altitude constraint was satisfied as a part of the reduced

solution. This avoids the terminal boundary layer problem

altogether.

(3) Parametric studies of the effect of initial and final orbit

altitudes on the optimal orbit plane change maneuver should be

conducted. This includes the possibility of optimizing the deorbit

impulse, and including the use of multiple impulsive maneuvers for

performing a part of the orbit inclination change outside the

atmosphere.

(4) Robustness of the guidance algorithms resulting from this study was

not investigated. In particular, the effect of uncertain

atmospheric conditions at high altitudes should be evaluated.

(5) Extensions to problem formulations suitable for aerocapture and

orbit plane change for future Mars missions should be explored.

6.3 Publications

The journal and conference publications that resulted from this research

effort can be found in [18] and in [22-26].
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Table 1

Comparison of Final Energies for the Reentry Problem

Guidance Final Time Efxl08(ft2/sec 2) AE

,., Optimal 358.6 -4.813 1.510

SP1 397.0 -4.813 1.510

SP2 415.8 -4.814 1.511
V

SP3 398.0 -4.813 1.510

v,d

Table 2

Comparison of Energy Loss for the AOTV Problem

Heading Optimal Guided % Error
Change Solution Solution

xl07 xl07

V

V

10o 4.713 4.971 5.47

20 o 8.858 9.109 2.83

30o 12.38 12.63 2.04

40 ° 15.40 15.66 1.69

mm
V
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